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.~d Hga in a fashion equlvalent to that of Fig. 13. The
cpendence on d(InEz)/de s also included [Fig. (14(b)].
m calculating the volume coefficient of Ep, we use
-o experimental value of d(Ep— Ls*)/de, the volume
cfficient of Eg as calculated above, and Eq. (7), to-
«ther with the strain coefficients of the tight binding
rameters (Table V). The resulting value of a(lnEp)/ de

< given in Table VIIL.

Assuming no strain dependence of b and H,q at all
cxcept for @71/2), we find the theoretical values of
3L,/deye and 9(L1— L3¥)/de to be 62 and 509, of the
.orresponding experimental numbers [Egs. 13(a) and
14(a)], respectively This part of the deformation
rotentials is mainly due to the strain dependence of %*

d, for hydrostatic deformation, to the strain depen-
‘ence of @12,

Discussion

The preceding analysis dealt with the observed
sructure in W45, A legitimate question is whether the
cnergy bands predict more structure than actually
hserved. Pure shear strain will produce a significant
‘hange in e only for strongly or moderately localized
ransitions. Moreover, even if the transitions are
wcalized but have k vectors of low symmetry (i.e.,
zeither parallel to [001] nor to [1117]), there will be a
<znal for both trigonal and tetragonal strain (Table
[1I) and the signal will tend to be small. Looking for
ocalized A, X, A, and L singularities only, we expect
the X5— X4 and the FS— L, transitions to show up
letween 2 and 5.5 €V, as they do, i.e., the measure-
aents are complete. On the other hand, hydrostatic
strain will produce a signal for nonlocalized transitions
w0, Experimental examples are the maximum in
W'u+-2Wys at 2.1 €V and the shoulder at 4.8 eV.

The energies of the identified transitions agree to
vithin 0.1 eV with the corresponding difference of
the eigenvalues, calculated with Chodorow’s?® potential.
uand~structure calculations based on potentials dif-
‘erent from that of Chodorow deviate from e\perunent
by as much as 1.5 V. Table VIII compares the energies
of the experimentally observed transitions with pre-
dictions of different calculations.!1442-44 There are
sther experimental results which agree most closely
with the result of the E(k) calculation based on
"hodorow’s potential, the most important of which is
"he area of the neck, measured with the de Haas-van
Alphen effect. The expenmental numbers which were
‘“-cxamined recently*4® agree with the calcula-

tion'.14.42 to within 11%. For calculations with other
s

;:.(11956 ?‘aulkner, H. L. Davis, and H. W. Joy, Phys. Rev. 161,
“H. L. Davis,
WL (1968).

“E. C. Snow and J. T. Waber, Phys. Rev. 157, 570 (1967).
SJ P, Jan and M. Templeton, Phys. Rev. 161, 556 (1967).
1967) J. O’Sullivan and J. W. Schriber, Cryogemcs 7, 118

J. S. Faulkner, and H. W. Joy, Phys. Rev. 167
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TasLE VIII. Energies of observed transitions in eV,
Self-
Energy Experiment Chodorows l-dependent® Watson® consistentd
Ep—Ls» 2.1 0.1 2.1 23 1.6 3.2
Xd—Xs 4.0 0.1 4.0 4.7 3.1 5.5
Li—Er 4.150.1 4.0 5.15 3.9

s References 13 and 14.
b References 13.

e References 42 and 43.
d Table II of Ref. 44.

potentials one might not get contact of the Fermi sur-
face with the [1117] face of the BZ at all.42

Thus, the experimental evidence for the superiority
of the band structure calculated with Chodorow’s
potential is overwhelming. However, there is no
theoretical formalism known today which tells us that
we have to choose just this potential. For example, a
self-consistent augmented-plane-wave calculation as
the one reported by Snow and Waber*! will agree with
the experimental results once the exchange term is
properly adjusted, but there is no theoretical justifica-
tion for such an adjustment.

Zallen* measured the change of the reflectance with
volume applying hydrostatic pressure directly to the
crystal. His results are also listed in Table VI. He
could quote only a lower limit for the deformation
potential of the 2.1-edge. Our method is much more
sensitive here because the large slope of the edge pro-
duces a large Ae; even for the small deformation poten-
tial. The two experiments are of comparable accuracy
in terms of energy shifts for the 4.3-eV edge. The
modulation experiment lost part of its advantage here
because the slope is smaller and the slope of the back-
ground unknown. The results of the two measurements
agree within the experimental error.

Objections might be raised against the procedure
used here to calculate the deformation potentials. In
particular, one ought to construct the tight-binding
functions d from resonance functions rather than from
atomic orbitals, as discussed by Heine.?*® However,
this would have little effect on the d-sp overlap b4, be-
cause the largest contribution to this integral comes
from regions where the resonance function and the
atomic 4 function are identical (the maximum of the
integrand lies at 0.53 of the nearest-neighbor distance).
The calculated strain coefficients of the tight-binding
integrals o, 7, & (Table V) are higher than predicted
by Heine’s theory, which would give Rd(InB3)/d0R=—3
(B=ga,m,d), but their influence on the deformation po-
tentials is small. Furthermore, it is not clear how the
theory of Heine has to be modified if one abandons the
muffin-tin approach, i.e., for overlapping potentials.

Two other calculations of the hydrostatic deforma-
tion potentials are known.!#8 Both are listed in

41 R. Zallen, in Colloguium on the Optical Properties and lhe
Electronic Structure of Metals and Alloys, Paris 1965, edited by
F. Abelts (North-Holland Publishing Co., Amsterdam 1960),

p. 164.
4 R, Jacobs (private communication).
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